Recent Researches

  • by Kern, Vanessa R.
    The energetics of drop deposition are considered in the capillary-ballistic regime characterized by high Reynolds number and moderate Weber number. Experiments are performed impacting water/glycol drops onto substrates with varying wettability and contact-angle hysteresis. The impacting event is decomposed into three regimes: (i) pre-impact, (ii) inertial spreading and (iii) post contact-line (CL) pinning, conveniently framed […]
  • by Belkadi, Mebarek
    Three-dimensional direct numerical simulations are used to characterize turbulent buoyant convection in a box-shaped Rayleigh–Bénard cavity with a rough bottom plate made of a series of square based blocks separated by valleys. The cavity is filled with water. The Rayleigh number varies over five decades up to . As mentioned in the literature, three successive […]
  • by Zhang, Xiaolong
    This paper presents a theoretical analysis of the liquid film dynamics during the oscillation of a meniscus between a liquid and its vapour in a cylindrical capillary. By using the theory of Taylor bubbles, the dynamic profile of the deposited liquid film is calculated within the lubrication approximation accounting for the finiteness of the film […]
  • by Malik, Sumit
    Dynamic and stationary axisymmetric deformation of viscous toroidal drops submerged in slow viscous flow are studied numerically. The immiscible ambient fluid is subject to a combination of rotation and extensional/compressional (biextensional) flow. The creeping flow approximation is assumed. The numerical simulations are performed with the help of the boundary integral method. The process under consideration […]
  • by Mérigaud, Alexis
    With a view to numerical modelling and optimisation of wave energy farms, a simple recursive formulation is employed to solve for the reflection and transmission of plane water waves by a number of rows of vertical obstacles, under the wide-spacing approximation. The proposed recursive formulation relies on the ‘concatenation’ of any two sets of obstacles, […]
  • by Mons, Vincent
    Reynolds-averaged Navier–Stokes (RANS)-based data assimilation has proven to be essential in many data-driven approaches, including the augmentation of experimental data and the identification of turbulence model corrections. As dense measurements of the whole mean flow are not always available when performing data assimilation, we here investigate the case where only a few punctual mean velocity […]
  • by Tokić, Grgur
    We study the effect of random perturbations of body positions in large uniformly spaced arrays of axisymmetric wave energy converters (WECs). We perform systematic computational simulations of ensembles of randomized array configurations that are obtained by introducing zero-mean position perturbations (characterized by randomness parameter ) to line arrays of uniform spacing . Of special interest […]